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Abstract: In this paper, a target tracking algorithm for tracking maneuvering vehicles is 
presented. The overall algorithm belongs to the category of an interacting multiple-model 
(IMM) algorithm used to detect multiple targets using fused information from multiple sensors. 
First, two kinematic models are derived: a constant velocity model for linear motions, and a 
constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a 
nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to 
the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed 
dynamic systems. The model-matched filter used in multi-sensor environments takes the form 
of a federated nonlinear information filter. In multi-sensor environments, the information-based 
filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the 
structural features and information sharing principle of the federated information filter are 
discussed. The performance of the suggested algorithm using a Monte Carlo simulation under 
the two patterns is evaluated. 
 
Keywords: Information filter, interacting multiple model, extended Kalman filter, federated 
filter, sensor fusion. 
 

1. INTRODUCTION 
 
Recently, the majority of vehicle companies are 

developing various driver assistance systems to 
increase vehicle safety and alleviate driver workload. 
The driver assistance systems include an adaptive 
cruise control (ACC), a lane-keeping support, a 
collision warning and collision avoidance, and an 
assisted lane change. The effectiveness of these driver 
assistant systems depends on the interpretation of the 
information arriving from sensors, which provide 
details of the surrounding vehicle environment and of 
the driver-assisted vehicle itself. In particular, all these 
systems rely on the detection and subsequent tracking 
of objects around the vehicle.  

Fig. 1 shows the configuration of an ACC system. 
The ACC system consists of a driver interface, 

multisensors which measure the distance and speed of 
a preceding vehicle, a controller which controls both 
the throttle and brake, and actuators [13,15]. This 
ability to predict motions is dependent on how well 
the sensors of an ACC vehicle can track other vehicles. 
In order to track other vehicles using the object 
information obtained from multiple sensors, tracking 
techniques based on the Bayesian approach are 
usually used [1]. A number of multiple-model 
techniques to track a maneuvering target have been 
proposed in the literature [1,9,10,12,14]. 

Generally, target motion models can be divided into 
two subcategories: the uniform motion model and the 
maneuvering model. A maneuvering target moving at 
a constant turn-rate and speed is usually modeled as a 
maneuvering model, and is called a coordinated turn 
model [1,7-9,14]. For application to air traffic control, 
a fixed structure IMM algorithm with a single 
constant velocity model and two coordinated turn 
models was analyzed [14]. Semerdjiev and Mihaylova 
[17] discussed variable- and fixed-structure augmented 
IMM algorithms, whereas a fixed-structure algorithm 
only was discussed in Li and Bar-Shalom 
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Fig. 1. Configuration of an ACC system. 
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[14], and was applied to a maneuvering ship tracking 
problem by augmenting the turn rate error. 

Data fusion techniques are used to employ a 
number of sensors and to fuse the information from all 
of these sensors in a central processor [11]. In a 
distributed system, the processing of raw data is 
performed at local sensors and the results are 
transmitted to a data fusion center for track processing 
in order to obtain the final results. As an alternative 
method to improve the track fusion, the information 
filter (IF) [1,16], which is claimed to be the algebraic 
equivalent to the Kalman filter (KF), was developed. 
The IF is essentially a KF expressed in measures of 
information about state estimates and their associated 
covariances. In addition, a decentralized IF (DIF) was 
developed by [16]. Carlson [2] and Carlson and 
Berarducci [3] considered a federated structure as 
another means of data fusion. It is known that the 
federated KF (FKF) has the advantages of simplicity 
and fault-tolerant capability over other decentralized 
filter techniques. 

The contributions of this paper are as follows. First, 
the IMM algorithm is applied to a driving algorithm 
for an ACC vehicle in driving on a road in multi-
sensor environments. Second, two kinematic models 
for the possible navigation patterns of vehicle are 
derived: A constant velocity model for linear motions, 
and a constant-speed turn model for curvilinear 
motions. Third, a federated information filter (FIF) for 
linear motion and a federated nonlinear information 
filter (FNIF) for curvilinear motion were used in 
multisensor environments. Fourth, in this study, unlike 
the FKF, there are no gain or innovation covariance 
matrices, and the maximum dimension of a matrix to 
be inverted is the state dimension. Fifth, this paper 
shows that, in information sharing, the FIF/FNIF is 
equal to the centralized IF/NIF (CIF/CNIF). 

This paper is organized as follows. In Section 2, a 
stochastic hybrid system is formulated and two 
kinematic models are discussed. In Section 3, we 
formulate an FIF for a constant velocity model and an 
FNIF for a constant-speed turn model in an IMM 
algorithm in multisensor environments. In Section 4, 
we evaluate the performance of these filters using a 
Monte Carlo simulation under the various patterns. 
Section 5 concludes the paper. 
 

2. PROBLEM FORMULATION 
 

The various driving patterns of a vehicle, such as a 
straight line and a curve, a cut-in/out, a u-turn, and an 
interchange were described in [10]. In this section, 
according to such driving patterns, a stochastic hybrid 
system in the form of an IMM algorithm to detect 
other vehicle using multi-sensors is formulated. Also, 
two kinematic models representing the analyzed 
driving patterns are introduced. 

2.1. Stochastic hybrid system 
Following the work of Li and Bar-shalom [14], a 

stochastic hybrid system with additive noise is 
considered as follows: 

)]()],(,1[),1(,1[             
)](),1(,1[)(

kmkmkkxkg
kmkxkfkx

−−−+
−−=

ν   
(1) 

with noisy measurements 

( ) [ , ( ), ( )] [ , ( )]z k h k x k m k w k m k= + ,          (2) 

where ( ) xnx k ∈ℜ  is the state vector including the 
position, velocity, and yaw rate of the vehicle at 
discrete time k, m(k) is the scalar-valued modal state 
(driving mode index) at instant k, which is a 
homogeneous Markov chain with probabilities of 
transition given by 

{ ( 1) | ( )}  ,       , Mj i ij i jP m k m k m mπ+ = ∀ ∈ ,   (3) 

where {}P ⋅  denotes the probability and M is the set 
of modal states, that is, constant velocity, constant 
acceleration, constant angular rate turning with a 
constant radius of curvature, among others. The 
considered system is hybrid since the discrete event 
m(k) appears in the system. In the driving of ACC 
vehicle, m(k) denotes the driving mode of the 
preceding vehicle, in effect during the sampling 
period ending at k, that is, the time period 1( , ]k kt t− . 
The event for which a mode jm  is in effect at time k 
is denoted as 

( ) { ( ) }j jm k m k m= .  (4) 

( ) znz k ∈ℜ  is the vector-valued noisy measurement 
from the sensor at time k, which is mode-dependent. 

[ 1, ( )] nk m k νν − ∈ℜ  is the mode-dependent process 
noise sequence with mean [ 1, ( )]k m kν −  and 

covariance Q[k-1, m(k)]. [ , ( )] znw k m k ∈ℜ  is the 
mode-dependent measurement noise sequence with 
mean [ , ( )]w k m k  and covariance R[k, m(k)]. Finally f, 
g, and h are nonlinear vector-valued functions. 

 
2.2. Two kinematic models 

The concept of using noise-driven kinematic 
models comes from the fact that noises with different 
levels of variance can represent different motions. A 
model with high variance noise can capture 
maneuvering motions, while a model with low 
variance noise represents uniform motions. The 
multiple-models approach assumes that a model can 
immediately capture the complex system behavior 
better than others. 

Two kinematic models for rectilinear and curvilinear 
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motions are now derived. First, assuming that 
accelerations in the steady state are quite small (i.e., 
abrupt motions like a sudden stop or a collision are not 
covered), linear accelerations or decelerations can be 
reasonably well covered by process noises with the 
constant velocity model. That is, the constant velocity 
model plus a zero-mean noise with an appropriate 
covariance representing the magnitude of acceleration 
can handle uniform motions on the road. In discrete-
time, the constant velocity model with noise is given by 
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where T is the sampling time (i.e., 0.01 sec in this 
paper), x(k) is the state vector including the position 
and velocity of the preceding vehicle in the 
longitudinal (ξ ) and lateral (η ) directions at discrete 
time k, that is, 

])(  )(  )(  )([)( ′= kkkkkx ηηξξ  (6) 

with ξ  and η  denoting the orthogonal coordinates 
of the horizontal plane; and ν  is a zero-mean 
Gaussian white noise representing the accelerations 
with an appropriate covariance Q. If ( )kν  is the 
acceleration increment during the k th sampling period, 
the velocity during this period is calculated by ( )k Tν , 

and the position is altered by 2( ) / 2k Tν . 
Second, a discrete-time model for turning is derived 

from a continuous-time model for the coordinated turn 
motion [1, p. 183]. A constant speed turn is a turn with 
a constant yaw rate along a road of constant radius of 
curvature. However, the curvatures of actual roads are 
not constant. Hence, a fairly small noise is added to a 
constant-speed turn model for the purpose of capturing 
the variation of the road curvature. The noise in the 
model represents the modeling error, such as the 
presence of angular acceleration and non-constant 
radius of curvature. For a vehicle turning with a 
constant angular rate and moving with constant speed 
(the magnitude of the velocity vector is constant), the 
kinematic equations in the ( , )ξ η  plane are 

)()( tt ηωξ −= , )()( tt ξωη =               (7) 

where ( )tξ  is the normal (longitudinal) acceleration 
and ( )tη  denotes the tangential acceleration, and ω  
is the constant yaw rate ( ω  > 0 implies a 
counterclockwise turn). The tangential component of 
the acceleration is equal to the rate of change of the 
speed, that is, ( ) ( ) / ( ( )) /t d t dt d t dtη η ωξ= = , and the 
normal component is defined as the square of the 
speed in the tangential direction divided by the radius 

of the curvature of the path, that is, 
2 2 2( ) ( ) / ( ) ( ) / ( )t t t t tξ η ξ ω ξ ξ= − = −  where ( )tη =  

( )tωξ . The state space representation of (7) with the 
state vector defined by ])()()()([)( ′= tttttx ηηξξ  
becomes 

)()( tAxtx = ,                            (8) 

where 
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The state transient matrix of the system, Eq. (8), is 
given by 
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It has been remarked that if the angular rate ω  in (7) 
is time-varying, (9) would be no longer true. In the 
sequel, following the approach in [1, p. 466], a 
“nearly” constant-speed turn model in a discrete-time 
domain is introduced. In this approach, the model 
itself is motivated from (9), but the angular rate is 
allowed to vary. 

A new state vector by augmenting the angular rate 
( )kω  to the state vector of (7) is defined as follows: 

])()()()()([)( ′= kkkkkkxa ωηηξξ    (10) 

where superscript a denotes the augmented value. 
Then, the nearly constant-speed turn model is defined 
as follows [1, p. 467]: 
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Evidently, both (5) and (11) are special forms of (1). 
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In addition, it is reasonable to assume that the 
transition between the driving modes of an ACC 
vehicle has the Markovian probability governed by (3).  

 
3. FNIF FOR CURVILINEAR MOTIONS 

 
The concept (structure) of an IMM algorithm is 

referred to in Bar-Shalom et al. [1, p.454] and Li and 
Bar-Shalom [14]. In this study, two models in the 
IMM algorithm were used: one for rectilinear motions, 
and the other for curvilinear motions. The tracking 
procedure of the vehicle in a rectilinear motion, using 
(5), is carried out by an FIF. However, in tracking 
curvilinear motions, which requires the estimation of 
ω  with a new augmented model, (8) in Section 2, an 
FNIF is used. 
 
3.1. The decentralized information filter 

We will begin by reviewing the CIF equations [16], 
as a means of introducing notation, and for later 
comparison with the FIF equations to be suggested in 
Section 3.3. Denote the information matrix as 

)|()|( 1 kkPkkY −
∆
=  and the information state as 

)|(ˆ)|()|(ˆ 1 kkxkkPkky −
∆
= , respectively. Then, at the 

master filter, assimilation equations to produce the 
global information state and information matrix with 
all the sensor data are given as 

 
i) Time update (prediction) 

)1|1(ˆ)1|()1|(ˆ −−−=− kkykkLkky , 
1

1

( | 1) [ ( 1) ( 1 | 1) ( 1)

                   ( 1)] .

Y k k F k Y k k F k

Q k

−

−

′− = − − − −

+ −
 (12) 

ii) Measurement update 
)()()()1|(ˆ)|(ˆ 1 kzkRkHkkykky −′+−= , 

)()()()1|()|( 1 kHkRkHkkYkkY −′+−= ,  (13) 

where the information prediction coefficient 
)1|( −kkL  is given by  

)1|1()1()1|()1|( 1 −−−−=− − kkYkFkkYkkL . (14) 

Remark 1: It is preferable to employ an IF since in 
multi-sensor structures the IF is easier to employ than 
the KF [16]. The IF is a more direct and natural 
method of dealing with multi-sensor data fusion 
problems than the conventional covariance-based KF. 
The attractive features of the IF are as follows. First, 
there are no gain or innovation covariance matrices, 
and the maximum dimension of a matrix to be 
inverted is the state dimension. In multi-sensor 
systems, the state dimension is generally smaller than 
the observation dimension. Hence it is preferable to 
employ the IF and to invert smaller information 
matrices than to use the KF and invert larger 

innovation covariance matrices. Second, initializing 
the IF is much easier than the KF. This is because 
information estimates (matrix and state) are easily 
initialized to zero information. Third, the IF is easier 
to distribute and fuse than is the KF. 

For a local estimate by jth sensor, the decentralized 
estimation equations are given by 

 
i) Time update (prediction) 

)1|1(ˆ)1|()1|(ˆ −−−=− kkykkLkky jjj ,     (15) 
11 )]1()1()1|1()1([)1|( −− −+−′−−−=− kQkFkkYkFkkY jj . 

ii) Measurement update 
)()()()1|(ˆ)|( 1 kzkRkHkkykky jjjjj

−′+−= , 

)()()()1|()|( 1 kHkRkHkkYkkY jjjjj
−′+−= , (16) 

where the information prediction coefficient 
)1|( −kkL j  is given by 

)1|1()1()1|()1|( 1 −−−−=− − kkYkFkkYkkL jjj , 
   (17) 
and )|( kky j  and )|( kkY j  denote the partial 
information state and its information matrix based 
only on the jth sensor’s own observation. Then, the 
assimilation equations to produce global information 
estimates are as follows: 
 
i) Information state 

∑
=

−−+−=
N

j
jj kkykkykkykky

1
)}1|(ˆ)|({)1|(ˆ)|(ˆ , 

   (18) 
ii) Information matrix 

∑
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j
jj kkYkkYkkYkkY

1
)}1|()|({)1|()|( . 

   (19) 
Remark 2: As an alternative filtering method of the 

CIF, the DIF was suggested [5]. In this study, however, 
contrary to the fully connected decentralized 
estimation algorithm of Mutambara [16], there was no 
communication between sensors in the filter structure. 
In Chong et al. [6] and Zhu et al. [18], Kalman-
filtering fusion with feedback from a central processor 
in a decentralized architecture is shown. It is 
composed of multiple structures involving a master 
filter at high level and local filters at low level. A local 
filter, related to each observation sensor, estimates the 
local state variable. The master filter combines the 
estimates transmitted from the local filters and 
deduces the globally optimal state estimate. A 
decentralized filter presented in this paper employs 
the architecture proposed in Chong et al. [6] and Zhu 
et al. [18]. As explained earlier, the decentralized 
estimation algorithm has the same form as the 
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centralized estimation algorithm in real-time 
implementation, since the master model includes N 
estimates. In general, however, in the event that the 
system models at local filters are all the same and the 
observation model is decomposed to each local filter, 
the filter structure is not optimal. The estimate of a 
local filter is affected by the overlapping use of the 
system model. The end result is that the computational 
load can be significantly reduced by this decentralized 
technique. Although the decentralized filtering 
technique has been recognized as an effective method 
of reducing the typically high computational load in 
standard centralized filtering, its potentially high 
fault-tolerance performance capability has not been 
widely investigated. 
 
3.2. The FIF for the constant velocity model 

An FKF can be considered a special form of 
decentralized KF [3]. The federated filter takes the 
decentralized technique one step further by employing 
the information-sharing principle. The federated filter 
can obtain the globally optimal estimate by applying 
the information-sharing principle to each local filter 
and then fusing the estimates of these local filters. For 
the systems of a local filter structure such as (15) and 
(16), the global information matrix and information 
state equations are as follows: 

 1( | ) ( | ) ( | )master NY k k Y k k Y k k= + + , (20) 

 ∑
=

=
N

i
imaster kkykky

1
)|(ˆ)|(ˆ . (21) 

Theorem 1: For the system (1) and (2), and the 
local filter structure (15) and (16), the solution of the 
FIF, (20) and (21), is equal to the solution of the CIF, 
(12) and (13), if conditions a) - c) are satisfied. 
a) The initial value of the information matrix, the 
initial information state, and the process noise 
covariance are distributed to local filters as follows: 

)0|0(1)0|0( YY
i

i γ
= , Ni ,,1= ,          (22) 

  )0|0(ˆ)0|0()0|0()0|0(ˆ 11 yYYy ii
−−= , Ni ,,1= , 

  (23) 
  )()( kQkQ ii γ= , Ni ,,1= .              (24) 

b) The information state and its information matrix, 
which are calculated using (20) and (21), are 
distributed to the local filters as follows: 

  )|(1)|( kkYkkY master
i

i γ
= , Ni ,,1= ,     (25) 

  )|(ˆ)|(ˆ kkykky masteri = , Ni ,,1= .       (26) 

c) An information-sharing factor is defined as follows:  

110      ,11
1

≤≤=∑
= i

N

i i γγ
.                 (27) 

Proof: we shall prove this hypothesis using a 
mathematical induction. First, we assume that at the k-
1 time epoch, the information state and the 
information matrix of the master filter is identical to 
those of the CIF as follows:  

)1|1()1|1( −−=−− ∗ kkYkkYmaster , i=1,…,N, (28) 

)1|1(ˆ)1|1(ˆ −−=−− ∗ kkykkymaster , i=1,…,N, (29) 

where ∗ŷ  and ∗Y  are the information state and its 
information matrix of the CIF, respectively. The fused 
information state and its information matrix are sent 
to the local filters as follows: 

1( 1 | 1)i master
i

Y k k Y
γ

− − = , (30) 

)1|1(ˆ)1|1(ˆ −−=−− kkykky masteri . (31) 

The prediction procedure at each local filter, using 
(12) and (13) of the CIF, is rewritten as follows: 
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The measurement update of the information matrix at 
each local filter can be obtained as follows: 

1( | ) ( | 1) ( ) ( ) ( )i i i i iY k k Y k k H k R k H k−′= − +  (34) 

11 ( | 1) ( ) ( ) ( ).master i i i
i

Y k k H k R k H k
γ

−′= − +  

Hence, the assimilation equation in the master filter is 
expressed as follows: 

∑∑
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=

−′+−=
N

i
iii kHkRkHkkY

1

1 )()()()1|(         (35) 

 ).|( kkY=  

The measurement update of the information state at 
the local filters can be written as 

 )()()()1|(ˆ)|(ˆ 1 kzkRkHkkykky iiiii
−′+−= . (36) 

Therefore, the assimilation equation in the master 
filter is given by 

∑
=

=++=
N

i
iNmaster kkyyyy

1
1 )|(ˆˆˆˆ  

])()()()1|(ˆ[
1

1∑
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N

i
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∗
=

−∗

=
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Remark 3: According to (22) and (24) of the 
suggested filtering scheme, the system process 
information is distributed among the master and local 
filters in the proportion of iγ1 . The issue in the 
suggested filter design is to determine how the total 
information is to be divided among the individual 
filters to achieve a higher fault-tolerance performance 
and improvement in throughput and efficiency. In the 
suggested filter, contrary to the other decentralized 
filters, the master filter combines only the filtered 
information state and its information matrix of local 
filters. Therefore, the number of variables transmitted 
from the local filters to the master filter is diminished. 
The FIF structure is shown in Fig. 2. 

 
3.3. The FNIF for the constant-speed turn model 

Since the model in (11) is nonlinear, the estimation 
of the state equation (10) will be performed via the 
FNIF. The nearly constant-speed turn model of (11) 
can be rewritten as follows: 
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Fig. 2. FIF structure. 

)1()1()]1(),1([)( −−+−−= kkGkkxfkx aaaa νω , 
 (38) 

where the function )(⋅af  is known and remains 
unchanged during the estimation procedure. The noise 
transition matrix )1( −kG  is the same form as that 
given in (11). To obtain the predicted state 

)1|(ˆ −kkxa , the nonlinear function in (38) is 
expanded in Taylor series around the latest estimate 

)1|1(ˆ −− kkxa  with terms up to first order, to yield 
the first-order EKF. The vector Taylor series 
expansion of (38) up to first order is 

ˆ( ) [ ( 1 | 1), ( 1)] ( 1)

ˆ[ ( 1) ( 1 | 1)] 

HOT ( 1) ( 1),

a
a a a a

x
a a
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x k f x k k k f k
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= − − − + −

× − − − −

+ + − −

 (39) 

where HOT represents the higher-order terms and  
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   (40) 
is the Jacobian of the vector f evaluated with the latest 
estimate of the state. The partial derivatives with 
respect to ω  are given by 
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2

ˆ ˆ( 1| 1)sin ( 1) ,
ˆ ( 1)

k k k T
k

η ω
ω

− − −
−

−
 

,4
ˆ ˆ( 1| 1)cos ( 1)f T k k kω ξ ω= − − −  

ˆ ˆ( 1| 1)sin ( 1),T k k kη ω− − − −  

where aQ  is the covariance of the process noise in 
(38). 

For a local estimate by the j th sensor, the 
decentralized nonlinear estimation equations are given 
by 
i) Time update (prediction)  

)]1(),1|1(ˆ[)1|()1|(ˆ −−−−=− kkkxfkkYkky a
j

a
jj ω , 

)1()1|1()1([)1|( 1 −′−−−=− − kfkkYkfkkY a
xj

a
xj aa   (42) 

1)]1( −−+ kQa . 

ii) Measurement update 

)()[()()1|(ˆ)|( 1 kkRkhkkykky jj
a

xjj a υ−′+−=  

)]1|(ˆ)( −+ kkxkh a
j

a
xa ,             (43) 

)()()()1|()|( 1 khkRkhkkYkkY a
xj

a
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where )1|(ˆ|]),([)(
−=

′′∇= kkxx
aa

x
a
x aaaa xhkh ω  is the 

Jacobian of the vector ah  evaluated at the predicted 
state )1|(ˆ −kkxa , and )(kυ  is the innovation given 

by ))(),1|(ˆ,()()( kwkkxkhkzk aa −−=υ . Then, the 
assimilation equations to produce global information 
estimates are as follows: 
i) Information state 

 ∑
=

=
N

i
imaster kkykky

1
)|()|(ˆ , (44) 

ii) Information matrix 

)|()|()|( 1 kkYkkYkkY Nmaster ++= .     (45) 

Remark 4: Ultimately, the local filters in the FNIF 
produce the same results as the information state and 
information matrix of the DIF, (15) and (16). However, 
the assimilation equations of the master filter produce 
the global optimal value by using only the updated 
value of each local filter. 

 
4. SIMULATIONS RESULTS 

 
As described in this section, we considered a state 

estimation problem of a vehicle in two dimensions. 
Simulations were executed to compare the 
performance of the IMM algorithms using a 
centralized EKF (CEKF), a federated EKF (FEKF), a 
centralized nonlinear IF (CNIF), and an FNIF, 
respectively, for curvilinear motions. The performance 

of these four algorithms was compared with the use of 
Monte Carlo simulations. The maneuvering vehicle 
trajectories were generated using the various patterns 
mentioned in [10]. Two kinematic models were used 
to track the maneuvering vehicle: A constant-velocity 
model for rectilinear motions and a constant-speed 
turn model for curvilinear motions. We then compared 
the performance of the four different IMM algorithms 
with these two models.  
 
4.1. The driving scenarios 

It was assumed that the vehicle moves rectilinearly 
in the beginning. The target initial positions and 
velocities were differently set for each scenario. The 
single-target track of the maneuvering vehicle was 
also assumed to have been previously initialized and 
that track maintenance was the goal of the IMM 
algorithms. The results for the 4 selected scenarios are 
presented, according to the driving patterns. 

i) Scenario for straight line and curve: The target 
initial positions and velocities were (x0= 0 m; y0=0 m; 

0x =28 m/s; 0y =28 m/s; ω  =0°/s). Its trajectory was 
a constant velocity between 0 s and 180 s with a speed 
of 28 m/s; a turn with a constant yaw rate of ω = 
1.4°/s between 180 s and 225 s; a constant velocity 
between 225 s and 362 s; a turn with a constant yaw 
rate of ω = 1.4°/s between 362 s and 437 s; a constant 
velocity between 437 s and 615 s. 

ii) Cut-in/out scenario: The target initial positions 
and velocities were (x0=0 m; y0=20 m; 0x = 28 m/s; 

0y =0 m/s; ω=0°/s). Its trajectory was a straight line 
between 0 s and 73 s with a speed of 28 m/s; a turn 
with a constant yaw rate of ω = 5.6°/s between 73 s 
and 82 s; a constant velocity between 82 s and 104 s 
with a speed of 28 m/s; a turn between 104 s and 113 s 
with a yaw rate of ω = 5.6°/s; a straight line between 
113 s and 149 s with a speed of 28 m/s; a turn with a 
constant yaw rate of ω = 5.6°/s between 149 s and 158 
s; a constant velocity between 158 s and 180 s with a 
speed of 28 m/s; a turn between 180 s and 189 s with 
a yaw rate of ω = 5.6°/s, and a straight line between 
189 s and 260 s. 

iii) U-turn scenario: The target initial positions and 
velocities were (x0=10 m; y0=10 m; 0x =28 m/s; 

0y =0 m/s; ω =0°/s). This scenario included a non-
maneuvering driving mode during scans from 0 s to 
73 s with a speed of 28 m/s, a 180° turn, lasting from 
scan 73 s to 107 s with a yaw rate of ω=9.3°/s, and a 
non-maneuvering driving mode from scan 107 s to 178 s.  

iv) Interchange scenario: The target initial positions 
and velocities were (x0=0 m, y0=0 m, 0x =28 m/s, 

0y =0 m/s, ω =0°/s). This scenario included a non-
maneuvering driving mode during scans from 0 s to 
144 s with a speed of 28 m/s, a 270°-turn, lasting from 
scan 144 s to 481 s with a yaw rate of ω =1. 4°/s, and 
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a non-maneuvering driving mode from scan 481 s to 
624 s. The maneuvering vehicle speed was 28 m/s. 
 
4.2. Parameters used in the design 

The parameters used in the design are listed here. 
Subscripts “CV” and “CST” stand for “constant 
velocity” and “constant speed turn,” respectively. The 
initial yaw rate of each navigation scenario was 

)0(ω =-1.4°/s, -5.6°/s, 9.3°/s, and –1.4°/s, respectively. 
The initial values of information matrix were as 
follows: 

CV mode: )0|0(Y  = diag{1  0.5  1  0.5}, 

CST mode: }   0.5   1   0.5   diag{1)0|0( 2
ωσ=Y , 

where ωσ  = (0.1) °/s. The information sharing 
factors used for the two sensors were 

5.0/1/1 21 == γγ . The initial mode probability 
vectors µ  were chosen as follows: 

 =µ 







5.0
5.0

. 

 
4.3. Performance evaluation and analysis 

The RMS error of each state component was chosen 
as the measure of performance. The comparison 
results of the IMM algorithms using a CEKF, an 
FEKF, a CNIF, and an FNIF, respectively, for the 
curvilinear motion are shown in Figs. 3-14, where the 
RMS error in the position and the velocity are plotted 
by Figs. 4, 5, 7, 8, 10, 11, 13, and 14. Figs. 3, 6, 9, and 
12 show comparisons of the true position and the 
estimated ones with the CEKF, the FEKF, the CNIF, 
and the FNIF, respectively. The results presented here 
are based on 100 Monte Carlo runs. It is evident that 
the two algorithms have almost equal position and 
velocity estimation accuracy for all scenarios. This 
confirms the algebraic equivalence which is 
mathematically proven and established in the 
derivation of the information filter from the Kalman 
filter. These conclusions were confirmed by the RMS 
error plots presented in Figs. 3-14, respectively. 
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Fig. 3. Comparison of position estimates in the case of 

straight lines and curves. 
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Fig. 4. Comparison of position errors in the case of 

straight lines and curves. 
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Fig. 5. Comparison of velocity errors in the case of 

straight lines and curves. 
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Fig. 6. Comparison of position estimates in the case of 

cut-in/out. 
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Fig. 7. Comparison of position errors in the case of 

cut-in/out. 



Federated Information Mode-Matched Filters in ACC Environment                       181 
 

0 50 100 150 200 250
0

5

10

15

20

25

30
 

 

RM
S 

ve
lo

cit
y e

rro
r (

m
/s)

Time (s)

 CEKF
 FEKF
 CNIF
 FNIF

 
Fig. 8. Comparison of velocity errors in the case of 

cut-in/out. 
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Fig. 9. Comparison of position estimates in the case of 

u-turn. 
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Fig. 10. Comparison of position errors in the case of 

u-turn. 
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Fig. 11. Comparison of velocity errors in the case of 

u-turn. 
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Fig. 12. Comparison of position estimates in the case 

of interchange. 
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Fig. 13. Comparison of position errors in the case of 

interchange. 
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Fig. 14. Comparison of velocity errors in the case of 

interchange. 
 

5. CONCLUSIONS 
 

In this paper, a tracking algorithm to track a 
maneuvering vehicle on a road in an adaptive cruise 
control environment was designed. The tracking 
algorithm detects and tracks other maneuvering 
vehicle on a road by two kinematic models derived in 
this paper. For the constant-speed turn model, a 
federated nonlinear information filter was used in 
place of the extended Kalman filter in multi-sensor 
systems. Besides, it was mathematically shown that, 
in view of the information sharing factor, the 
federated information filter is equal to the centralized 
information filter. Comparison and analysis of the 
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IMM algorithms using the CEKF, the FEKF, the CNIF, 
and the FNIF were performed. 
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